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With an estimated prevalence of 463 million affected,
type 2 diabetes represents a major challenge to health
care systems worldwide. Analyzing the plasma pro-
teomes of individuals with type 2 diabetes may illumi-
nate hitherto unknown functional mechanisms underlying
disease pathology. We assessed the associations be-
tween type 2 diabetes and >1,000 plasma proteins in the
Cooperative Health Research in the Region of Augsburg
(KORA) F4 cohort (n 5 993, 110 cases), with subsequent
replication in the third wave of the Nord-Trøndelag
Health Study (HUNT3) cohort (n 5 940, 149 cases). We
computed logistic regression models adjusted for age,
sex, BMI, smoking status, and hypertension. Addition-
ally, we investigated associations with incident type 2 di-
abetes and performed two-sample bidirectional Mendelian
randomization (MR) analysis to prioritize our results.

Association analysis of prevalent type 2 diabetes
revealed 24 replicated proteins, of which 8 are novel.
Proteins showing association with incident type 2 di-
abetes were aminoacylase-1, growth hormone re-
ceptor, and insulin-like growth factor–binding protein
2. Aminoacylase-1 was associated with both prevalent
and incident type 2 diabetes. MR analysis yielded nom-
inally significant causal effects of type 2 diabetes on
cathepsin Z and rennin, both known to have roles in
the pathophysiological pathways of cardiovascular
disease, and of sex hormone–binding globulin on type
2 diabetes. In conclusion, our high-throughput pro-
teomics study replicated previously reported type 2
diabetes–protein associations and identified new candi-
date proteins possibly involved in the pathogenesis of
type 2 diabetes.
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Type 2 diabetes is a significant cause of morbidity and
mortality, with an estimated worldwide prevalence of 463
million patients, one-half of whom are undiagnosed (1). It
is a complex, multifactorial disease characterized by an
interplay of both genetic and nongenetic factors that lead
to insulin resistance and hyperinsulinemia (1,2). More-
over, type 2 diabetes causes widespread microvascular and
macrovascular complications, resulting in significant health
care expenditure (1).

The proteomics of type 2 diabetes, the investigation of
a set of proteins within different tissues of diabetic animal
models, and the comparison of patients with diabetes with
healthy control subjects have enabled the discovery of new
protein–type 2 diabetes associations (3–5). Examples of
associations include adiponectin (3), leptin (5), and in-
sulin-like growth factor–binding protein 2 (IGFBP-2) (4).
Of particular clinical interest is the study of type 2 diabetes
associations with plasma proteins, which reflect systemic
effects and may serve as predictive biomarkers (3,5–7).

The integration of genetic and proteomic knowledge
has provided new insight into the pathophysiology of type
2 diabetes. The best example is Mendelian randomization
(MR), a method used to infer causality in observational
study settings (4,8). Previous MR studies of biomarkers
and type 2 diabetes have suggested causal protective roles
for proteins like adiponectin, b-carotene, N-terminal proB-
type natriuretic peptide, and sex hormone–binding glob-
ulin (SHBG) as well as causal harmful roles of delta-6
desaturase and ferritin (7).

Here, we use a highly multiplexed aptamer-based pro-
teomics platform to analyze the associations between prev-
alent type 2 diabetes and 1,095 plasma proteins in the
Cooperative Health Research in the Region of Augsburg
(KORA) study. We replicate our results in the independent
Nord-Trøndelag Health Study (HUNT) study and investi-
gate associations with incident type 2 diabetes using
follow-up data from KORA and HUNT. Moreover, we
test the performance of our newly discovered biomarkers
to predict incident type 2 diabetes when added to an
adapted version of the updated German Diabetes Risk
Score (GDRS) (9). We then evaluate these newly identified
proteins using the protein-protein interaction resource
STRING (10). Finally, we applied two-sample bidirectional
MR analysis (11) to assess causality and prioritize the newly
discovered relationships.

RESEARCH DESIGN AND METHODS

Study Populations

KORA Cohort
The KORA study comprises independent samples from
Augsburg in southern Germany (12). In the current study,
we used a subsample of 1,000 individuals randomly se-
lected from the participants of the KORA F4 survey (N 5
3,080, performed 2006–2008) with deep phenotyping data
(n 5 1,800) (13). Detailed clinical and sociodemographic
information was collected. Data from the KORA FF4 survey

(performed 2013–2014) represents the 7-year follow-up
of KORA F4. The ethics committee of the Bavarian
Medical Association (Berlin, Germany) reviewed and ap-
proved the study, and all participants gave written in-
formed consent.

HUNT Cohort
HUNT is a prospective population-based cohort from Nord-
Trøndelag County in Norway (14). We used the HUNT3
survey (n 5 1,117 with proteomics measurements, per-
formed 2006–2008) for the validation of the KORA study
results. The HUNT study collected detailed sociodemo-
graphic and clinical information. We used linked primary
care and hospital registries for information on diabetes
status at 9 years follow-up. All study participants provided
written informed consent.

Proteomics Measurement
Proteins were measured in fasting and nonfasting plasma
samples in KORA and HUNT, respectively, using the
SOMAscan platform as described previously (13,15). In
summary, plasma and bead-coupled aptamers, each of which
has a high affinity toward a specific protein, were incu-
bated. After washing steps, bead-bound proteins were
biotinylated, and complexes comprising biotinylated target
proteins and fluorescence-labeled aptamers were photo-
cleaved off the bead support and pooled. Following re-
capture on streptavidin beads and further washing steps,
aptamers were eluted and quantified as a proxy to protein
concentration by hybridization to custom arrays of aptamer-
complementary oligonucleotides. On the basis of standard
samples included on each plate, the resulting raw inten-
sities were processed using a data analysis workflow that
included hybridization normalization, median signal nor-
malization, and signal calibration to control for interplate
differences (16). Raw intensities are reported in relative
florescence units.

In KORA, one sample failed SOMAscan quality control,
leaving 999 samples for analysis. Of the 1,129 SOMAmer
probes (SOMAscan assay version 3.2), 29 failed SOMAscan
quality control. We also removed the five probes recom-
mended by the SOMAscan assay change log issued on 22
December 2016, leaving 1,095 probes for analysis. For
replication, we used the HUNT probes that passed quality
control.

Definition of Outcome and Model Covariates
In KORA, type 2 diabetes was defined as self-reported
disease validated by the responsible physician or medical
chart review or as current use of glucose-lowering medi-
cation. All participants without known diabetes were assigned
to receive a standard 75-g oral glucose tolerance test (3).
Prevalent type 2 diabetes refers to participants with the
disease at the time of blood sample collection, and incident
refers to those developing type 2 diabetes after that time
point within a 7- and 9-year follow-up period in KORA and
HUNT, respectively.

diabetes.diabetesjournals.org Elhadad and Associates 2767



In HUNT, prevalent type 2 diabetes was self-reported,
which we validated using clinical data from hospitals and
primary care registries using the ICD-10 code E11 and the
International Classification of Primary Care, Second Edi-
tion, code T90. We identified incident cases of type 2 di-
abetes from the same registries using identical codes.

We classified participants of both cohorts who partic-
ipated in leisure time physical activity for at least 1 h/week
as physically active (more details are available in the Sup-
plementary Material). Current hypertension was defined in
KORA as having a systolic blood pressure $140 mmHg,
diastolic blood pressure $90 mmHg, and/or use of antihy-
pertensive medication. In HUNT, we used hospital and
primary care data and ICD-10 codes I10–I15 and Inter-
national Classification of Primary Care, Second Edition,
codes K86 or K87 to identify participants with hypertension.

Drugs were assessed in KORA by asking the participants
to bring the packages of their medication and supple-
ments with them to their study center visit. Using database
software (17), medications were identified using Anatom-
ical Therapeutic Chemical codes, medication identifier bar
code, or product name.

Statistical Analysis
Preprocessing of the quality controlled SOMAscan data
was the same in both cohorts and involved log2 trans-
formation and (0, 1) standardization by subtracting the
per-cohort mean and dividing by the per-cohort SD to
allow easier interpretation of the odds ratios (ORs) per SD
of the protein.

Proteome-Wide Analysis
Using logistic regression, we ran two proteome-wide anal-
yses in KORA: associations between proteins with preva-
lent type 2 diabetes and with incident type 2 diabetes. For
each of the two outcomes, we ran one model per protein
(i.e., 1,095 models per outcome) and adjusted for the
potential confounders age, sex, BMI, smoking status, and
current hypertension at baseline. We then replicated the
results in HUNT using the same model. We excluded
participants from both cohorts with missing values for
the confounders, which led to the sample sizes of 993 and
940 for KORA and HUNT, respectively. For the analysis
with incident type 2 diabetes, we further excluded all
participants with prevalent type 2 diabetes, resulting in
sample sizes of 881 and 794 for KORA and HUNT, re-
spectively. We used the false discovery rate (FDR) Benjamini-
Hochberg method separately for the outcomes to account
for multiple testing. An association was considered statis-
tically significant at FDR ,0.05.

We replicated significant results in HUNT using the
same model. We considered proteins replicated at FDR
,0.05, with FDR calculated on the basis of the number of
significant proteins in KORA. To examine whether anti-
diabetic drug intake influenced the replicated associations,
we ran sensitivity analyses by including the drugs of interest
as confounders one at a time.

Data Analytics of Replicated Proteins
The candidate proteins were processed through the Pharos
(18) platform, experimental Gene Ontology (19) terms,
Kyoto Encyclopedia of Genes and Genomes (KEGG) (20)
pathways, human disease association data from the GWAS
Catalog (21), Online Mendelian Inheritance in Man (22),
and the text-mining DISEASES platform (23) as well as
through phenotype data from the corresponding mouse
ortholog knockouts (24). We mined these resources for
data on the potential associations between the candidate
proteins and type 2 diabetes.

Prediction of Incident Diabetes
We applied a biomarker discovery strategy to investigate
whether proteins significantly associated with incident type
2 diabetes in KORA could be used for prediction of incident
type 2 diabetes. These were 10 proteins, of which 1 failed
quality control in HUNT. We used KORA as a training data
set and HUNT as a test data set and used an adapted version
of GDRS, a diabetes risk score that was trained in 21,845
participants of the European Prospective Investigation into
Cancer and Nutrition Potsdam (EPIC-Potsdam) study with
a mean follow-up time of 7 years, as a benchmark (9). More
details on the GDRS are available in the Supplementary
Material.

Adaptation of the GDRS was necessary because some of
the variables were missing from one or both cohorts. We
defined smoking status using only information on current
and former smoking per se without regard to the number
of cigarettes smoked. We used the average of the original
GDRS score weights for each smoking category to repre-
sent our combined categories (former: [151 45] / 25 30;
current: [23 1 77] / 2 5 50). Family history of diabetes
was defined in KORA as having at least one parent or
sibling with diabetes and in HUNT, as having at least one
parent, sibling, or child with diabetes. We calculated the
risk of a positive family history by averaging the original
GDRS of having one parent, both parents, or at least one
sibling with type 2 diabetes ([56 1 106 1 48] / 3 5 70).
Our final adapted GDRS was calculated as follows: 5.1 3
age in years 1 7.6 3 waist circumference in cm – 2.7 3
height in cm 1 47 3 hypertension status 2 2 3 physical
activity (at least 1 h/week) 1 30 3 former smoking 1
50 3 current smoking 1 70 3 family history of type 2
diabetes.

We tested prediction performance of all models using
the receiver operating characteristic area under the curve
(AUC) and applied the DeLong test to compare AUCs of
nested models. First, we added the proteins to the adapted
GDRS model and applied the least absolute shrinkage and
selection operator (LASSO) (25) for model selection in
KORA. LASSO shrinks the sum of the absolute values of
the regression coefficients, forcing some to be set to 0, thus
performing a form of model selection. The LASSO l was
chosen by cross-validation using the squared error for Gauss-
ian models. The GDRS was calculated in each cohort and
used as a score that was fixed by setting its penalty factor
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to 0 to prevent any shrinkage by LASSO. We then com-
pared the performance of the LASSO protein-extended
GDRS model to the adapted GDRS model. We assessed the
calibration of the LASSO-selected model using calibration
plots (26). Moreover, we tested the performance of the
proteins as single predictors on top of the adapted GDRS
model.

MR
We attempted to infer causality of the replicated proteins
associated with type 2 diabetes by applying two-sample
bidirectional MR. Figure 1 shows the summary of the
pipeline for the causal inference analysis. In summary, we
extracted single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) from published genome-wide
association study (GWAS) summary statistics of European
ancestry if they passed the Bonferroni threshold of P ,
5e-8. We extracted the IVs from the meta-analysis of type
2 diabetes GWAS studies by Xue et al. (27) (N 5 455,607)
and the GWAS studies of SOMAscan-measured proteins by
Sun et al. (28) (N 5 3,301), Suhre et al. (13) (N 5 1,000),
and Emilsson et al. (29) (N 5 5,457) for proteins. We
identified ambiguous palindromic SNPs, defined as SNPs
with A/T or G/C alleles and an effect allele frequency of
;0.5 using the cutoff points defined by the TwoSampleMR
package in R (30). We replaced these with a proxy SNP,
defined as a SNP with r2 .0.85 with the SNP in question,
when available, or excluded them from further analyses

Figure 1—MR analysis flowchart. aClumping refers to the process of selecting only the independent IVs (i.e., those that are not in linkage
disequilibrium [LD] with one another) using the cutoff LD r2 .0.001. bHarmonizing the data refers to ensuring that the effects of the IV on the
exposure and the outcome reflect the same strand effect.
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(31). We then clumped the SNPs, which implies removing
SNPs in linkage disequilibrium with the lead SNP using the
r2 cutoff 0.001. We did not manually prune the final list of
IVs. Furthermore, IVs selected for proteins needed to be in
cis (i.e., within 1 Mb of the protein-coding gene as per
Human Genome Assembly GRCh37.p13).

We proceeded to extract the results of these IVs or of
one of their proxies from the outcome’s GWAS. For pro-
teins, priority was given to results from Sun et al. (28)
because of the larger sample size, followed by Suhre et al.
(13) dependent on availability.

We used the Wald ratio to check for causality (32). In
cases of more than one IV, we used the random effects
model of the inverse variance–weighted meta-analysis to
combine the Wald ratio estimates of all IVs (8,32). For
sensitivity analyses, whenever there was more than one IV,
we ran the MR‐Egger regression model to look for hori-
zontal pleiotropy in our causal models (33) and leave-one-
out analysis and forest plots to identify outliers among
these IVs that would be driving the results in a certain
direction and examined scatter plots to check for outliers.

Analytical steps are summarized in Supplementary Fig.
1. All analyses were done using R version 3.5.1 software
(The R Foundation for Statistical Computing). For MR
analysis, the TwoSampleMR package of R version 0.4.22
was used (30).

Data and Resource Availability
Informed consents given by KORA study participants do
not cover data posting in public databases. However, the
KORA data are available given approval of online requests
at the KORA Project Application Self-Service Tool (https://
epi.helmholtz-muenchen.de). The HUNT data can be accessed
given approval of applications to the HUNT Research Centre
(https://www.ntnu.edu/hunt/data). The data used in the MR
analysis are publicly available and can be accessed through
https://cnsgenomics.com/content/data (Xue et al. [27]), https://
www.phpc.cam.ac.uk/ceu/proteins (Sun et al. [28]), https://

metabolomics.helmholtz-muenchen.de/pgwas/ (Suhre et al.
[13]), and www.sciencemag.org/content/361/6404/769/
suppl/DC1 (Emilsson et al. [29]). Example code for the
analytic steps of the article can be accessed at https://
github.com/maelhadad/T2D_SOMAscan_Proteomics.

RESULTS

Descriptive Statistics of the Study Populations
Table 1 and Supplementary Table 1 show the baseline
characteristics of both cohorts and their follow-up subsets,
respectively. HUNT participants were on average older and
comprised more men.

Association Results of Plasma Proteins With Type 2
Diabetes
The proteome-wide analysis with prevalent type 2 diabetes
yielded 85 FDR-significant proteins (Supplementary Table
2), of which 24 successfully replicated in HUNT (Table 2
and Fig. 2A). Of these, osteomodulin was most strongly
associated (on the basis of KORA P value) with an OR-per-SD
increase in protein level of 0.61 (95% CI 0.47–0.77) in KORA
and of 0.65 (0.53–0.79) in HUNT. Among the positively
associated proteins, peptide YY (PYY) had the strongest
association (1.34 [1.1–1.62] in KORA and 1.58 [1.32–1.92]
in HUNT).

To assess whether the proteome panel was associated
with future type 2 diabetes, we performed a proteome-
wide analysis with incident type 2 diabetes using the same
model, which yielded 10 FDR-significant protein associa-
tions (Supplementary Table 3). Of these, aminoacylase-1,
growth hormone receptor, and IGFBP-2 replicated in
HUNT (Table 3 and Fig. 2B). Adiponectin failed quality
control in HUNT, and thus, replication was not possible.
Among the replicated proteins, aminoacylase-1 showed
the strongest association (OR 1.78 [95% CI 1.34–2.37]
in KORA and 1.6 [1.26–2.05] in HUNT). Interestingly,
aminoacylase-1 overlapped between the replicated results
of both prevalent and incident type 2 diabetes.

Table 1—Baseline characteristics of the prevalent study populations

Variable KORA (n 5 993) HUNT (n 5 940) P value*

Age (years) 59.31 (43–79) 69.03 (31.6–99.4) ,0.001

Sex female 514 (51.8) 245 (26.1) ,0.001

BMI (kg/m2), mean (SD) 27.79 (4.58) 28.36 (3.96) 0.003

Waist circumference (cm), mean (SD) 94.51 (13.81) 100.01 (11.01) ,0.001

Physical inactivity 376 (37.9) 472 (49.2) ,0.001

Smoking status ,0.001
Never 423 (42.6) 234 (24.9)
Former 422 (42.5) 504 (53.6)
Current 148 (14.9) 202 (21.5)

Family history of diabetes 312 (38.1) 280 (31.6) 0.005

Hypertension 396 (39.9) 389 (41.4) 0.531

Data are mean (range) or n (%) unless otherwise indicated. *Continuous variables were tested for a difference between the two
populations using t tests and categorical variables with x2 tests with continuity correction.
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Additionally, we assessed the concordance of the effect
estimates across the cohorts. Of 85 KORA FDR-significant
proteins associated with prevalent type 2 diabetes, only 7 had
different effect directions, but none of these was nominally
significant inHUNT (Fig. 3A). For incident type 2 diabetes, two
proteins showed opposite effect directions, with neither of
these reaching nominal statistical significance (Fig. 3B).

Overlap With Known Type 2 Diabetes Genetic and
Protein Associations
To assess the overlap between our results and known type
2 diabetes associations, we compared our results to gene-
based results described by Xue et al. (27). Furthermore, we
compared our replicated proteins with protein lists of in-
terest published by the Human Diabetes Proteome Project,
namely the 1,000 diabetes-related proteins, the human islet
of Langerhans proteome, the rodent b-cell proteome, and
the human blood glycated proteome (34). Of the 26 unique
replicated proteins, 18 overlapped with at least one list.
Eight proteins have not been previously found to be related
to type 2 diabetes (Supplementary Table 4).

Data Analytics of Replicated Proteins
Supplementary Table 5 shows information extracted from
Pharos for our replicated proteins. a-L-Iduronidase, cathepsin
A, and cathepsin Z shared the same lysosomal pathway
association according to KEGG (20).

Investigating Potential Effects of Drugs on Type
2 Diabetes–Protein Associations in KORA
None of the replicated protein-incident type 2 diabetes
associations showed loss of significance when adjusting for

any of the investigated drugs. On the other hand, three of
the replicated associations with prevalent type 2 diabetes
lost statistical significance when adjusting for antidiabetic
medication intake (Supplementary Table 6 and Supple-
mentary Fig. 2). All the associations retained the same
direction of effect apart from PYY, which showed an opposite
effect after adjusting for antidiabetic medication and, more
specifically, metformin.

Prediction of Incident Type 2 Diabetes
Starting with the nine proteins associated with incident
type 2 diabetes in KORA available in HUNT, we evaluated
whether a subset of them selected using LASSO would
improve the predictive performance of the adapted GDRS
benchmark model (9). LASSO selected five proteins, namely
transforming growth factor-b receptor type 3 (TGFbR3),
tartrate-resistant acid phosphatase type 5, pappalysin-1,
afamin, and scavenger receptor cysteine-rich type 1 protein
M130 (sCD163). The LASSO-selected protein-enhancedmodel
showed improvement in both KORA and HUNT (GDRS
protein-extended AUC 0.84 [95% CI 0.79–0.89] and 0.67
[0.61–0.72]; GDRS-only AUC 0.77 [0.71–0.83] and 0.66
[0.60–0.72], respectively); however, according to the Delong
test, the AUC improvement in HUNT was not statistically
significant (P 5 0.72) (Supplementary Fig. 3). The calibra-
tion plot of the LASSO-selected model in HUNT yielded an
intercept of 0.23 and a slope of 0.53 (Supplementary Fig. 3).
The intercept of the calibration plot examines the difference
of means of predicted and observed risk. In HUNT, it is.0,
thus showing higher observed type 2 diabetes cases in
HUNT as those predicted. This could be attributed to
longer follow-up in HUNT (9 years vs. 7 years in KORA)

Figure 2—Volcano plot of type 2 diabetes results in KORA, where proteins that replicated in HUNT are labeled. A: Results of the proteome-
wide analysis with prevalent type 2 diabetes in KORA. B: Results of the proteome-wide analysis with incident type 2 diabetes in KORA.
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and to the fact thatHUNT is older thanKORA and therefore
has more cases of type 2 diabetes. The slope of calibration is
0.53 in HUNT, which indicates a possible overfitting of the
model or the need for coefficient shrinkage in HUNT that
could also be attributed to the heterogeneity between the
study populations in terms of patient characteristics and
outcome definition. The training data set used gold stan-
dard screening to define type 2 diabetes, where HUNT did
not apply a similar definition and would therefore have
hidden cases and measurement error. Therefore, the out-
come being predicted for HUNT (and defined by KORA) is
slightly different from the outcome observed.

We further tested the performance of individual pro-
teins as predictors of incident type 2 diabetes in KORA and
validated our models in HUNT (Supplementary Fig. 4). The
following proteins showed relatively similar performance
in both cohorts: aminoacylase-1 (KORA AUC 0.78 [95% CI
0.73–0.84]; HUNT AUC 0.71 [0.65–0.77]), growth hor-
mone receptor (KORA AUC 0.77 [0.71–0.83]; HUNT AUC
0.70 [0.64–0.76]), and IGFBP-2 (KORA AUC 0.78 [0.72–
0.84]; HUNT AUC 0.73 [0.68–0.79]).

MR Analysis of Replicated Plasma Proteins and Type
2 Diabetes in KORA
Using up to 120 SNPs as genetic instruments, we inves-
tigated whether type 2 diabetes had a causal effect on the
26 replicated proteins from both the prevalence and the
incidence analyses (Supplementary Table 7 and Supple-
mentary Fig. 5). For cathepsin Z (MR inverse variance–
weighted b 5 0.13; P 5 2.00e-03) and renin (0.08; P 5
3.15e-02), a nominally significant causal effect of prevalent
type 2 diabetes was observed, each with the same direction

of effect as its observational results. MR-Egger analyses to
test for the presence of horizontal pleiotropy showed no
significant results for either protein (intercept P 5 0.17
and 0.1 for cathespin Z and renin, respectively). Tests and
plots to check for outliers in the IVs showed no significant
aberrations (Supplementary Figs. 6 and 7).

We also ranMR to investigate whether any of the proteins
had a causal effect on type 2 diabetes. We analyzed 13 pro-
teins for which we found independent cis-acting IVs (Sup-
plementary Table 8 and Supplementary Fig. 5). We observed
a nominally significant causal effect of SHBG on type 2 di-
abetes, with the same direction of effect as its observed
association (MR Wald b 5 20.09; P 5 2.95e-02). None of
the associations for either direction survived Bonferroni
multiple testing correction.

DISCUSSION

We report a proteome-wide analysis of type 2 diabetes in
KORA and replication in HUNT using aptamer-based affin-
ity proteomics. Our analysis yielded 26 unique replicated
significant protein associations. Of these, 24 replicated ex-
clusively with prevalent type 2 diabetes, 2 replicated exclu-
sively with incident type 2 diabetes, and aminoacylase-1
replicated with both.

Aminoacylase-1 is a zinc-dependent peptidase involved
in amino acid metabolism (35). The protein has not been
described in the context of type 2 diabetes before but has
been reported to be overexpressed in obese liver tissue,
thus linking it to obesity and inflammation (36). A further
study found aminoacylase-1 to be downregulated in obese
omental fat, which the authors hypothesized to be due to
adipocyte dysfunction caused by obesity (35). Moreover,

Figure 3—Coefficient concordance between KORA and HUNT for prevalent type 2 diabetes (A) and incident type 2 diabetes (B). Proteins
that replicated in HUNT are labeled.
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aminoacylase-1 is associated with arginine production
according to KEGG (20). Plasma levels of arginine were
found to be higher in patients with type 2 diabetes (37).

In addition to aminoacylase-1, incident type 2 diabetes
results included an inverse association with IGFBP-2 and
a positive association with growth hormone receptor.
IGFBP-2 was reported to have type 2 diabetes protective
effects and has been shown to reverse hyperglycemia in
insulin and leptin deficiency (38). These associations high-
light the role of the growth hormone axis in the early
pathophysiology of type 2 diabetes. Both growth hormone
and IGF-I are known to play roles in the insulin receptor
cascade, leading to insulin resistance (39).

The analysis of prevalent type 2 diabetes confirmed
previously known proteomic associations like gelsolin (40),
renin (41), SHBG (42), and hepatocyte growth factor re-
ceptor and revealed promising new candidate proteins,
including osteomodulin, matrilin-2, Wnt inhibitory factor-
1 (WIF1), tumor necrosis factor–inducible gene 6 protein
(TNFAIP6), cerebral dopamine neurotrophic factor (CDNF),
RGM domain family member B, TGFbR3, and SLIT and
NTRK-like protein 5, which were downregulated in type
2 diabetes cases, and lysosomal protective protein, galectin-
3 binding protein (LGALS3BP), and PYY, which were
upregulated.

Our results overlap and complement results of mass
spectrometry studies on obesity. Plasma levels of apolipo-
protein B, LGALS3BP, and SHBG were found to be altered
by sustained weight loss (43) and gastric bypass surgery–
induced weight loss (44), with the latter affecting also
plasma protease C1 inhibitor, complement C2, and gelsolin.

New protein associations with prevalent type 2 diabetes
included proteins previously reported in association with
complications of type 2 diabetes. Increased circulating
levels of LGALS3BP were linked to nonalcoholic fatty liver
disease (45) and acute venous thrombosis (46), and
TGFbR3 was reported to be associated with diabetic
nephropathy (47). TNFAIP6 and CDNF were shown to
have protective effects, while WIF1, TGFbR3, and PYY
were reported to have harmful effects, in the development
and progress of cardiovascular atherosclerotic diseases
(48–52). Along this line, members of the complement
family like plasma protease C1 inhibitor and complement
C2 were downregulated and upregulated, respectively, in
our results, and proteins from the renin-angiotensin and
kallikrein-kinin systems included the upregulated renin
and downregulated kallikrein-7.

Although our study cohorts were different regarding
the fasting status of their samples, most proteins (78 of
85 for prevalent and 8 of 10 for incident type 2 diabetes)
showed concordant effects between cohorts, while none of
the nonconcordant proteins were statistically significant in
the replication (Fig. 3). Nonetheless, fasting has significant
metabolic consequences that are expected to be reflected in
the plasma proteome and could have contributed to non-
replication in HUNT. However, there are multiple other
potential explanations for the nonreplication, perhaps

differing from one protein to another. Importantly, while
plasma protein levels differ between fasting and nonfast-
ing samples, this does not necessarily match the variance
in the protein levels caused by the disease status. As such,
disease-related variance would still be apparent despite
differences in fasting status. For example, some of our
examined proteins were reported to show differences in
their levels according to fasting status, like SHBG (53), PYY
(53), and soluble CD163 (54), yet their associations with
disease status were replicated in our study. Of the proteins
that failed replication in HUNT, MMP2 (53) and pappa-
lysin-1 (55) have been found to be affected by food intake.
However, their effect sizes were similar in both cohorts,
suggesting that fasting status may not be the primary
reason for nonreplication for most proteins.

Sensitivity analyses into the potential effect of drugs on
the type 2 diabetes–plasma protein associations showed
loss of significance of some associations after adjusting for
antidiabetic medication. The effect direction of all the re-
sultant associations remained the same except for PYY,
which showed a change of direction after adjusting for
metformin intake; however, because its effect estimate was
not significant after adjustment, it is difficult to draw any
conclusions from this.

Additionally, we evaluated the significant proteins’ abil-
ity to predict incident type 2 diabetes. The protein-extended
models showed improved performance over the adapted
GDRS benchmark model (9) in both the KORA discovery
and the HUNT replication, although the improvement was
very small and not statistically significant (P5 0.72) for the
latter. Moreover, we tested the performances of individ-
ual proteins on top of the adapted benchmark model. The
best performances in the replication cohort came from
aminoacylase-1, growth hormone receptor, and IGFBP-2,
each of which achieved approximately equal performance
in HUNT compared with KORA, results that warrant
validation in clinical trials using commercially available
ELISA kits. Because the KORA samples were taken from
individuals in a fasting state ($8 h) and HUNT samples
were taken nonfasting, these results seem to indicate
that fasting status is largely irrelevant with regard to
type 2 diabetes prediction for these candidate biomarkers.
However, fasting may potentially be relevant for other
markers, since the AUC was much smaller in HUNT com-
pared with KORA for some of the other measured bio-
markers in combination with the GDRS.

Our investigations into the causal framework governing
the relation between plasma proteins and type 2 diabetes
showed suggestive harmful causal effects of SHBG on type
2 diabetes. SHBG has been previously reported to be asso-
ciated with type 2 diabetes (42) and may be implicated in the
development of insulin resistance (42). We demonstrated it
to be negatively associated with type 2 diabetes, a causal
direction suggested by the MR analysis as well.

Causal inference analysis showed suggestive causal effects
of type 2 diabetes on both cathepsin Z and renin. In line
with previous observations, we demonstrated renin to be
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positively associated with type 2 diabetes in both obser-
vational and MR analysis results (41). The association is an
indicator of the upregulated renin-angiotensin-aldosterone
system, which is activated in obesity and type 2 diabetes,
thus contributing to cardiovascular disease complications
(41,56). Cathepsin Z is a member of the peptidase C1 family
that plays a role in lysosomal function, which might explain
its connection to diabetes through b-cell failure driven by
lysosomal degradation (57).

Study Strengths
We applied a high-throughput proteomics platform on sam-
ples from population-based cohorts for our analyses, which
enabled us to test a large number of proteins with a wide
concentration range and to generalize our results to our
samples’ respective populations. We used samples from
plasma, which is easily accessible and is the usual medium
of biomarkers. Additionally, the plasma proteome reflects
on the levels of proteins originating from a broad range of
tissues, thus giving us insight into systemic pathways.
Finally, we were able to test for the causal relationship in
both directions using publicly available data on genetic
associations with both type 2 diabetes and proteins.

Study Limitations
We are aware of several limitations to our study. First,
aptamer-based proteomics is susceptible to potential probe
cross-reactivity and nonspecific binding (28,29). However,
we verified that none of the proteins identified have been
flagged for such issues (validation data presented in Sup-
plementary Material, Supplementary Table 10, and Sup-
plementary Figs. 10 and 11). Because of the lack of oral
glucose tolerance test data in HUNT, the rigorous defini-
tion of type 2 diabetes used in KORA could not be extended,
and the discrepancy in fasting status between the cohorts
may have contributed to the limited replication of our results.
Our prediction models do not reflect the dynamic changes in
the proteome, which would require a more detailed investi-
gation. This is also true for the MR results, which reflect the
lifelong genetic risk rather than point change in single protein
levels in relation to disease status. Although, there is an
overlap between the participants of the genetic data sets used
for type 2 diabetes and proteins through KORA, none of the
associations tested using such data were significant.

Conclusion
Our proteome-wide analysis of type 2 diabetes replicated
known associations and revealed novel candidate pro-
teins. Associations with incident type 2 diabetes included
aminoacylase-1, which overlapped with prevalent type 2 di-
abetes associations. New associations with prevalent type
2 diabetes included TNFAIP6, CDNF, WIF1, TGFbR3, and
PYY, all of which are believed to play a role in the de-
velopment of cardiovascular complications, like atheroscle-
rosis. MR suggested a causal role of SHBG on type 2 diabetes,
which is in line with previous observational and MR analysis
results. It also suggested a causal effect of type 2 diabetes

on cathepsin Z and renin, both of which are known to play
a role in type 2 diabetes complications. Our results offer
insight into proteins involved in the pathogenesis of type
2 diabetes and its complications, proteins that could be
valuable drug targets for all levels of prevention.
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